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Ⅰ. Introduction

As life expectancy increases, arise a need to study the 

problems an aging society would face such as the health 

problems accompanying the old aged. One of these aging 

health problems is cognitive impairment. Cognitive 

impairment (CI) isn’t only a problem for the patient or 

family members, it can be a problem for the whole 

society if not considered properly. That is CI may lead to 

dementia (DE) which doesn’t have a cure and therefore 

the best intervention for it is at the early stage with 

memory training. It can be said that early detection is 

key in maintaining cognitive health. 

CI affects the individual’s ability to carry out activities 

of daily living and memory retaining of information. In 
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mild cognitive impairment (MCI) patients’ cases, they can 

present symptoms that are not as significantly detectable 

as DE patients; meaning they would have more capacity 

to do their daily tasks and retain more information in 

their memory (NICE, 2020; Riley et al., 2022). And as it is 

estimated that half of MCI patients would develop DE 

later on, early detection of DE through screening of MCI 

is crucial in controlling DE (Riley et al., 2022). DE in itself 

is a broad term that covers an array of several diseases 

such as Alzheimer, which affects about 60% to 70% of DE 

patients, and other forms such as vascular dementia, 

dementia with Lewy bodies and frontotemporal dementia 

(WHO, 2023). People who are more at risk of DE are 

those who are 65 or older who may suffer of high blood 

pressure diabetes or obesity, smoke or drink too much 

alcohol, are physically inactive or socially isolated and 

suffer from depression (WHO, 2023). According to WHO’s 

“Global action plan on the public health response to 

dementia 2017~2025,” dementia affected 47 million 
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patients worldwide in 2015, and this number is estimated 

to rise to 75 million in 2030 and 132 million in 2050. 

The costs of DE, which are burdened by both the patient 

and the community or government, were estimated to be 

at 1.3 trillion USD globally in 2019 (WHO, 2023).

Traditionally brain imaging and face-to-face screening 

tests were used as tools in diagnosing DE. DE detection 

tests have also been developed to assess memory 

capacity, word retrieval and verbal fluency, problem 

solving and motor abilities. Screening and assessment 

tests include the Mini-Mental State Examination (MMSE), 

the General Practitioner assessment of Cognition 

(GPCOG), Montreal Cognitive Assessment (MoCA), which 

were developed to assess cognitive function (Riley et al., 

2022). These evaluation tools are mainly used in face-to- 

face clinical settings, but they are also being developed 

to be used for self or machine evaluation. Development 

enables remote models to conduct more longitudinal and 

informational research.

More recent efforts are directed at improvising mobile 

devices or tablet systems that can be used as a more 

accessible and cost-effective self-administrated measure, 

that would also contribute to more informative 

longitudinal data as it would be used more frequently by 

the patients than traditional screening examinations 

(Öhman et al., 2021). Automatic speech analysis has 

become a research focus of cognitive decline evaluation 

because it is a non-invasive, non-surgical method of 

capturing and evaluating subjects’ language performance 

in real time König et al. (2015). Considering that motor 

activity and linguistic features have been integrated 

already in existing screening examinations, acoustic or 

prosodic measurements can be regarded as the novel 

approach of recent studies. And according to König et al. 

(2015), human speech signals can be used as biomarkers to 

detect cognitive decline progression; that is because 

spontaneous speech in interaction requires the use of 

multiple memory systems for word retrieval, semantic 

understanding, and syntax composition (De Looze et al., 

2021). This can provide important information that can help 

evaluate and manage cognitive decline.

Considering acoustic variable analysis use for cognitive 

function evaluation, previous literature reviews have 

focused on the applications of machine learning models in 

cognitive function evaluation, the accuracy and usability 

of mobile phone system screening, and the comparison 

between using traditional clinical assessments with novel 

digitized ones. Among them, Martínez-Nicolás et al. (2021) 

also aimed at giving a general overview of the methods 

of which data were collected in neurodegenerative disorders’ 

assessment through voice measures, and how these data are 

analyzed. Another review by Petti et al. (2020) focused on 

the relationship between speech features, speech tasks used 

in collecting data and classification methods used for 

classifying AD with healthy or MCI with healthy. In this 

study however, we focus only on the use of acoustic and 

prosodic features for automating a cognitive capacity 

classification system. The goal is to analyze the use of 

acoustic variables considered in previous studies as cognitive 

deterioration biomarkers, in terms of their accuracy and 

importance in the evaluation of cognitive decline. In addition, 

for evaluating the usability of acoustic features in measuring 

cognitive decline, we investigate the accuracy of the machine 

learning algorithms that used only acoustic measures in their 

classifications in the reviewed papers. The reason this paper 

is focusing on acoustic prosodic variables is that unlike 

motor skills evaluation, it can be measured easily through a 

conversation on a phone or tablet. Also, measurement of 

acoustic features can be done completely automatically 

with a higher accuracy rate compared to semantic 

features analysis in some languages where the automation 

of semantic and syntactic speech analysis is not without 

faults.  

Ⅱ. Methodology

1. Article search strategy

This study focused on reviewing papers researching the 

use of phonetic acoustic variables in diagnosing or 

evaluating cognitive decline. A search was conducted on 

the National Institutes of Health’s National Library of 

Medicine (PMC) (PubMed), Science Direct and BMC 

Springer using search terms including: “MCI voice 

measures”, “MCI Alzheimer acoustics”, “MCI shimmer”, “MCI 

jitter”, “MCI Alzheimer prosodic features”, “Alzheimer vocal 

features”, and “MCI acoustic features”. The search was 

focused on articles that allowed open access and have been 

published in the last 10 years between January 2013 and 

April 2023. As for the CI types studied in the target 

papers, papers studying CI types such as AD, frontal lobe 

dementia, vascular dementia, and Lewy bodies dementia 

were selected, excluding papers studying dementia caused 

by Parkinson’s disease, primary progressive aphasia, and 

other causes. In addition, studies that combine acoustic 

variables with linguistic variables or motor skills in the 
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cognitive function evaluation model, and studies aimed at 

proving the accuracy of machine learning methods were also 

excluded. The criteria for inclusion and exclusion in this 

review are shown in Table 1 below.

Criterion Inclusion Exclusion

Publishing date  From Jan. 2013 
till April 2023

 Before Jan. 2013

Focus of study
(classifications)

 Any 
combination of 
classification 
between: HC, 
MCI and DE or 
AD

 Articles 
focusing on 
prosodic 
acoustic 
characteristics 
as a 
classification 
criterion

 Articles focused on 
Parkinson’s disease, 
primary progressive 
aphasia or thyroid 
cancer, diabetes and 
blood pressure related 
studies.

 Articles combining 
motor skills and 
semantic or lexical 
features with acoustics 
for classification.

 Articles not specifying 
the acoustic measures 
used in classification.

 Articles focusing only 
on comparing machine 
learning systems or 
proving their accuracies 
rather than the acoustic 
variable significance in 
the study.

Types of 
articles

 Articles that 
are peer 
reviewed

 Research 
articles

 Literature review 
articles

 Conference summaries
 Editor comments
 Editorials
 Case studies
 Preliminary study 

protocols

Language  Written in 
English 

 Written in any other 
Language

Note. MCI=mild cognitive impairment; AD=Alzheimer disease; 
DE=dementia; HC=healthy controls.

Table 1. Inclusion and exclusion criteria of reviewed article

2. Selection procedure

After application of filtration for date of publication and 

access, a total of 4,025 articles were the preliminary 

search result. After screening articles’ titles and abstracts 

literature reviews, editorials, and conference summaries 

were excluded; the preliminary screening resulted in a total 

of 103 articles. A full-text screening of these 103 articles 

was then done to determine whether the article was 

focusing on machine learning systems and its efficiency 

rather than acoustic features, or if the acoustic measures 

are not specified. The result of the selection procedure was 

21 articles which are the focus of this literature review 

(Figure 1).

Ⅲ. Results 

Although this literature review targeted papers 

published in the last 10 years it has been noticed that 

about 70% of the literature in this review has been 

published in the last three years only (2020~2023). This 

indicates that as a research field the analysis of acoustic 

variables’ use in cognitive assessment is still a relatively 

new topic with a promising future (Table 2). 

1. Acoustic variables

Regarding programs used for feature extraction; PRAAT 

was the main program used for manual extraction, and in 

case of automatic extraction other tools such as opensmile 

toolkit, audacity, automatic speech recognition (ASR) based 

tool, Voice Activity Detector (VAD), python programs and 

processing libraries, divas Voice Diagnostics System by 

XION®. With audacity as the relatively more popular choice 

between all the tools followed by the opensmile toolkit. 

As for analyzed acoustic features, Table 2 shows the 

variables that were reported to be the most significant in 

the classification of CI which included silent and pause 

segments, formant frequency, speech time, jitter, shimmer, 

MFCC, and GTCC. Figure 3 below shows the variables 

contributing to the evaluation of cognitive function reported 

in the literature by category. Variables related to pause and 

silence interval segments have been reported in 9 papers as 

significant variables in the screening process, with these 

variables accounting for the highest percentage at 42.8% of 

the total of all significant variable reports. Followed by 

phonation and speaking time-related variables (phoneme 

rate and articulation rate) and fundamental frequency 

variables such as the average and SD of F0, semitone, 

central of gravity, asymmetry (skewness), central peak 

promise and n-PVI accounted for 23.8% each. In four 

studies, MFCC has been shown to play a significant role in 

the screening process especially the first 14 MFCCs with 

emphasis on coefficients 1, 3, 4, 7. Considering the above 

results, temporal variables can be considered as essential 

components in the classification set for increasing 

classification accuracy since most studies have reported that 

MCI and DE utterances have more silent segments and 

longer pause times and are characterized by more use of 

fillers in utterances, all of which are prominent 
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time-related variables.

2. Machine learning systems

Automatic evaluation relies on machine learning 

algorithms and statistical models for the classification of 

data fed to the system. These classifications can be 

categorical discrimination, or it can go for scaling the 

data depending on the type of classification modeled in 

the system. Table 2 shows the machine learning models 

that were used for cognitive function classification using 

acoustic variables that were analyzed in the literature. 

The most noticeable aspect of the data in Table 2 is that 

the machine learning system that was used most in the 

literature was SVM. SVM was used in 11 papers and is 

reported to have a larger accuracy range than other 

systems, up to 97.7%. Figure 3 describes the frequency of 

use of machine learning systems in the reviewed 

literature.

Figure 1. Flow diagram of paper selection process

Note. GTCC=gammatone cepstral coefficients;  MFCC=mel-frequency 
cepstral coefficients; SPL=sound pressure level.

Figure 2. Reports of significance for variables per paper

Note. LR=linear regression;  RF=random forest;  SVM=support 
vector machine; Other=reduced error pruning, linear regression, 
XGBoost, random tree, LightGBM, naive bayes, K-nearst 
neighbor, linear discriminant analysis, tree Bagger (each used 
once). 

Figure 3. Machine learning systems used in classifications 
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Study Population (Size)
Significant temporal or acoustic 

measures
MLS Accuracy of classification

Toth L. et al. 
(2018)

HC, MCI (84) 1. Total length of silent pauses
2. Length of pauses

1. Naive Bayes
2. RF
3. SVM

Naive Bayes=66.7%
RF=75%
SVM=65.5%

Nagumo et al.
(2020)

HC, MCI, GCI, MCI 
with GCI (8,779)

Logistic regression of binary 
classification

AUC: MCI=.61
GCI=.67 
MCI with GCI=.77 

Gonzalez-Moreira
et al. (2015)

HC, Mild DE (20) 1. SD of F0
2. Mean of F0 

SVM 85%

König et al. (2015) HC, MCI, AD (64) Mean of silent segments length SVM 81%

De Stefano et al. 
(2021)

HC, MCI, FTD, VD, AD 
(61)

1. Semitones
2. SPL max

Multiple linear regression analysis 89.3% 

Meilán et al. 
(2020)

nodMCI, preclinical AD 
(preAD)

1. Skewness (Asymmetry in the 
spectral feature)

2. nPVI (Variability in articulatory 
rhythm)

Kumar et al. 
(2022)

HC, DE (442subject/ 
recordings)

1. F0
2. log-energy
3. First 4 formants
4. First 14 MFCC 14 GTCC
5. 14 delta-MFCC 14-delta GTCC

SVM
RF
REP
RT

SVM=80.3%
RF=87.6%
REP=82.6%
RT=77.4%

Shimoda et al. 
(2021)

HC, DE (123) XGBoost
RF
LR

Audio file-based prediction: AUCs 
for XGboost=.863, RF=.882, and 
LR=.893

Participant-based prediction: AUC 
for XGboost=1.000, RF=1.000 
and LR=.972

Liu et al. (2023) HC, AD (10, and 393 in 
training data)

1. Pause feature sequences LDA
DT
KNN
SVM
TB

TB=70.7%

Lin et al. (2020) Incidental DE and HC 
(4,849)

1. JitterDDP_sma_de
2. Shorter segments

Cox proportional hazards models 
with robust sandwich estimators

AUC of 81.2%

Themistocleous 
et al. (2018)

MCI, HC (55) SGD optimization algorithm in 
python

83%

Da Cunha et al. 
(2022)

LvPPA, AD (16) Pause rate

Nishikawa et al.
(2022)

HC, MCI F1, F2 of vowels SVM (Linear)
RF
light GBM

SVM (Linear) + ViT_b16a =90.4%

Random Forest + ViT_b16a =89.5%

LightGBM + ViT_b16a =90.7%

Martínez-Nicolás 
et al. (2022)

NC, MCI, AD (400) 1. Phonation time
2. Number of pauses in speech

-

López-de-Ipiña 
et al. (2013)

AD, HC (40) - SVM, Multi Layer Perceptron (MLP) 97.7%

Yoshii et al. (2023) MCI, HC (94) 1. Duration of response time
2. Duration of silent periods
3. Proportion of silent periods

SVM MMSE related speech=66.0%
Everyday conversational 

speech=68.1% 

Sumali et al. 
(2020)

Depression, DE (120) 1. GTCC coefficients 1, 3, and 12
2. MFCC coefficients 1, 3, 4, 7, 

and 12 

SVM with linear kernel with LASSO 
algorithm

93.3%±7.7%

Wang et al. (2022) AD, aMCI, HC (324) Silence duration LR AUC: NC/aMCI=.74
NC/AD=.84
NC/aMCI+AD=.80

Yamada et al. 
(2021)

MCI, HC (76) 1. MFCC
2. Pause
3. Speech rate
4. Phonation time

SVM 86.40%

Hall et al. (2019) HC, MCI, AD (44) 1. Jitter and shimmer (Local and 
APQ3)

2. Silence (Mean and SD)

SVM with linear kernel function HC vs. MCI=82.4
HC vs. DE=92.6%

Themistocleous 
et al. (2020)

HC, MCI (55) 1. H1-A3
2. Cepstral peak prominence
3. Center of gravity
4. Shimmer
5. Articulation rate 
6. Averaged speaking time

Note. AD=Alzheimer disease; aMCI=amnestic mild cognitive impairment; ANN=artificial neural networks; AUC=area under the curve of the receiver; CN=cognitively 

normal; DE=dementia; DLB=dementia with Lewy bodies; DT=decision tree; F0=fundamental frequency; FTD=frontotemporal dementia; GCI=global cognitive impairment; 
GTCC=gammatone cepstral coefficients; HC=healthy control; KNN=K-nearest neighbor; LDA=linear discriminant analysis; LR=logistic regression; LvPPA=logopenic variant
of primary progressive aphasia; MCI=mild cognitive impairment; MFCC=mel-frequency cepstral coefficients; MLS=machine learning systems; NC=normal control; 
nodMCI=nondegenerative MCI; preAD=preclinical AD; REP=reduced error pruning; RF=random forest; RT=random tree; SRP=speech range profile; SD=standard deviation; 
SGD=nesterov stochastic gradient descent; SVM=support vector machine; TB=tree bagger; VD=vascular dementi; GBoost=extreme gradient boosting.
a ViT_b16 is a Transformer model that is optimized for image processing.

Table 2. An overview of studies included in the review
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Figure 4 shows the accuracy of cognitive function 

classification performed by the machine learning systems. 

Graph (a) shows the accuracy and AUC of all machine 

learning reported in the literature, while graphs (b) and 

(c) link the accuracy of machine learning systems to the 

reportedly significant acoustic variables. Graph (b) 

presents the accuracy of machine learning systems using 

pause and silence segments in classification. And graph 

(c) shows the accuracy of classification using all of pause 

and silent segments’ related variables, phonation and 

speaking time variables, and fundamental frequency 

variables. As demonstrated in Figure 4, models that used 

all most significant variables achieved AUC of more than 

90% in the range of accuracy spanning from 65% to 100%.

Ⅳ. Discussion and Conclusion

This study aimed to identify new trends in utilizing 

non-surgical methods for detecting and classifying cognitive 

decline through the use of acoustic phonetic variables. The 

literature review encompassed 21 papers published between 

2013 and April 2023, which were selected and analyzed to 

discern the prevailing patterns in employing machine 

learning and acoustic measurements for CI assessment; the 

selected papers were specifically focused on analyzing the 

use of acoustic variables within the evaluation process. 

Consequently, studies that integrated semantic, syntactic, or 

motor ability-related factors with acoustic phonetic 

variables during the classification process were excluded 

significant acoustic phonetic variables that contribute to 

the from the final literature review selection. The primary 

objective of this review was to identify the most accurate 

model of machine learning employed and to highlight 

automatic classification process.

In the context of machine learning models employed 

for the classification of cognitive decline evaluation, the 

application of machine learning and the relationships 

between different models have been elucidated in prior 

studies. For instance, Agbavor and Liang (2022a) 

highlighted that healthcare-related applications often 

make use of Support Vector Classifier (SVC) and logistic 

regression. Tanaka et al. (2017) conducted a comparison 

between SVM and logistic regression, concluding that SVM 

exhibited higher accuracy than the latter. This conclusion 

finds support in the work of de la Fuente Garcia et al. 

(2020) in their review. In a comprehensive review 

encompassing 51 papers on AI approaches to monitoring 

Note. Diversity in bar colors represent the number of studies using the system and accuracies achieved by each system (data of each 
model’s accuracy for each study is represented in Table 2). 
AUC=area under the curve of the receiver; F0=fundamental frequency; LR=logistic regression; NB=naive bayes; RF=random forest; 
SVM=support vector machine; TB=tree bagger; XGBoost=extreme gradient boostin. 

Figure 4. Accuracy and AUC of machine learning in classification
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AD through speech and language features, SVM, Naive 

Bayes, Random Forest, and K-Nearest Neighbor emerged 

as the most frequently used machine learning systems. 

Notably, SVM consistently outperformed the other models 

(de la Fuente Garcia et al., 2020).

Agbavor and Liang (2022b) also compared SVC and 

logistic regression with Random Forest, which they 

explained has the drawback of not achieving the same 

level of performance as the previous two models when 

working with small datasets. While some studies on CI 

utilize existing databases or corpora (such as dementia bank, 

AZTIAHORE database, etc.) containing audio files from 

patients at varying stages of cognitive decline (Javeed et 

al., 2023), other studies that gather their own data 

encounter the challenge of limited datasets. Hence, it is 

reasonable that SVM and logistic regression are favored 

options. SVM, in particular, emerged as the predominant 

machine learning model in HC and CI classification. Figure 3 

illustrates this dominance, as SVM was employed in 11 out 

of the 21 studies. This aligns with the findings of another 

review by Vigo et al. (2022) concerning the classification of 

AD using language and acoustic features. They noted that 

SVM was the most widely used classification model in 

studies connecting speech signals with the disease. They 

attributed SVM’s popularity to its ability to handle 

non-linear data distributions, which are common in 

speech-related data (Vigo et al., 2022).

In Figure 3, Random Forest ranks second after SVM as 

the most frequently used classification model. A similar 

outcome was reported in Javeed et al.’s (2023) review of 

research directions in studies utilizing machine learning to 

predict dementia. They found that SVM was the most 

frequently utilized machine learning model in the literature, 

followed by Random Forest. It appears that SVM and 

Random Forest are the prevailing choices in machine 

learning systems when employing speech features for the 

classification of CI. However, in the case of Random 

Forest, considerations regarding dataset size must be taken 

into account prior to application, unlike SVM. Furthermore, 

in the context of binary classifications, both SVM and 

Random Forest are regarded as optimal tools, with a 

particular emphasis on SVM’s capacity to achieve high 

accuracy in CI classification (Javeed et al., 2023).

Previous studies and reviews’ findings are also consistent 

with this review’s findings. In literature reviewed within 

this study, SVM emerged as the most commonly utilized 

model, as mentioned earlier. It was also reported to 

achieve higher classification accuracies, reaching up to 

93% (Sumali et al., 2020) and 97% (López-de-Ipiña et al., 

2013). However, it’s important to note that the heightened 

accuracy of the model was achieved by incorporating 

algorithms such as the LASSO algorithm and neural 

networks like the Multi-Layer Perceptron (MLP) to enhance 

the Model’s classification criteria. High percentages were 

not only related to SVM though; in another research 

conducted by Shimoda et al. (2021), three machine 

learning models were employed and compared for the 

classification of dementia using features extracted from 

everyday conversational speech collected via mobile 

phones. These models included extreme gradient boosting 

(XGboost), Random Forest, and Logistic regression. The 

study reported AUC values of .863, .882, and .893, 

respectively, for audio-file-based classification, and 1.000, 

1.000, and .972, respectively, for participant-based 

classification. While these outcomes are remarkable, it's 

worth mentioning that Shimoda et al.’s (2021) study 

comprised a population of 99 HC and only 24 individuals 

with DE. The disproportional and limited size of the 

population might raise concerns about the feasibility of 

replicating these results with a larger population.

The accuracy of classification depends not only on the 

machine learning model but also on the acoustic 

measures utilized in the classifications. Table 3 in the 

appendix presents a list of acoustic phonetic variables 

analyzed in each study reviewed in this paper. As shown 

in Table 3, the list of variables extracted and analyzed 

for each study differed according to each study. This 

divergence is also evident in the variation of reports of 

the most effective variables used in evaluating cognitive 

function in each study. This variance in the consideration 

of variables makes cross-study comparisons challenging 

and points out the need for standardized feature sets (e.g., 

ComPare, eGeMAPS etc.) to facilitate better comparisons 

(de la Fuente Garcia et al., 2020). Nonetheless, many 

studies have attempted to determine the significance of 

specific acoustic or temporal measures in the classification 

of cognitive function decline and the relationship 

between these measures and CI.

As illustrated in Figure 2 the most commonly reported 

significant acoustic measures in CI classifications are the 

Temporal related variables. These variables include pause 

and silence segment’s length, total number and ratio of 

pause and silent segments, in addition to speech duration 

and phonation related variables. This finding aligns with 

conclusions drawn in other studies, where it was observed 

that temporal variables related to pause duration and 

phonation rate are affected in MCI conditions, and that 

these temporal variables are considered markers of 
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cognitive decline even in early stages (Beltrami et al., 

2018; Hecker et al., 2022).

Beltrami et al. (2018) explained that the increase in 

pause duration and decrease in phonation rate result from 

extended discourse planning, impacted by the deterioration of 

verbal fluency and lexical retrieval processes as memory is 

affected by degeneration. Yeung et al. (2021) concluded 

that word-finding difficulty and incoherence played roles in 

distinguishing MCI and AD. Word-finding difficulty was 

inferred from pause duration, phonation duration, word 

duration, and syntactic complexity, further emphasizing the 

importance of temporal variables in differentiating not only 

HC and MCI but also MCI and AD. Boschi et al. (2017) also 

emphasized the link between discourse planning and temporal 

features, such as pause and phonation duration, and how these 

variables indicate CI.

In addition to temporal variables, variables related to 

fundamental frequency were also found to be significant 

in the reviewed studies. However, when it comes to 

fundamental frequency, findings from previous studies 

differ in their conclusions about its importance in evaluation of 

CI. For instance, Tanaka et al. (2017) argued that pitch is 

more related to emotions, depending on emotional state 

rather than cognitive intelligence. They used this to explain 

the disparity in their pitch-related results compared to 

previous studies that associated reduced pitch modulation with 

AD. It is worth noting here that López-de-Ipiña et al.’s 

(2013) study, which achieved 97% accuracy in 

classification between HC and AD, considered emotional 

temperature in classification. “Emotional Temperature” 

encompasses several prosodic and paralinguistic features 

linked to pitch and energy that enable the recognition of 

emotions in speech. This study integrated the concept of 

emotional temperature into the classification process, 

contributing to the higher accuracy achieved. Additionally, 

machine learning models that combined variables related to 

pause, silence segments, fundamental frequencies, and 

phonation/speaking time, as reviewed in this study, 

demonstrated higher AUC values in classification compared 

to other models, as illustrated in Figure 4’s (c) graph.

Another noteworthy feature in classification is the MFCC 

and GTCC sets. In studies conducted since 2020, variables 

like MFCC and GTCC have been utilized in the classification 

process and have been shown to significantly impact the 

screening process results. Tang et al. (2022) used MFCC 

for acoustic classification and argued that the variability of 

MFCC coefficients’ increase and decrease aids in predicting 

MCI and distinguishing between MCI and HC. This was also 

mentioned by Voleti et al. (2020), where the variability of 

MFCC coefficients proved useful in distinguishing between HC 

and CI over time. MFCC is a large set of features, but 

studies reviewed in this paper highlighted some specific 

coefficients and their relation to De. Kumar et al. (2022) 

highlighted the significance of the first 14 MFCC 

coefficients in classification of HC and De, while Sumali et 

al. (2020) concluded that coefficients 1, 3, 4, 7, and 12 

differentiate between depression and De.

While motor skills and linguistic semantic measurements 

are both somewhat good indicators in CI classifications, 

employment of acoustic phonetic measurements would 

make classification and diagnosis more time effective and 

cost friendly, easily done over the phone or on an 

application. Analysis on the other side would not require 

much human intervention as would semantic and syntactic 

analysis. It can be an all-automated process. Beyond CI 

classification, acoustic phonetic-related speech signal 

variables are also gaining traction for diagnosing other 

psychological conditions such as depression, stress, and 

bulimia (Hecker et al., 2022). This further underscores the 

potential future role of standardized acoustic phonetic 

variable sets as speech acoustics integrates with medicine 

and automatic disease detection. The adoption of 

standardized acoustic variable sets would facilitate a more 

accurate evaluation of machine learning models and their 

efficiency in disease classifications, as well as the 

development of algorithmic systems to meet the needs of 

efficient automated diagnosis.

While our data is confined to publications from the 

last 10 years, the study reveals a notable concentration of 

literature in the most recent years. This observation 

implies that more and more literature about this topic 

and related new trends would be published in the near 

future, which this study cannot capture. Furthermore, the 

data of the research analyzed in this review should not 

be generalized, given that many studies have relied on 

limited data for analysis and classification, potentially not 

fully representing the broader population. However, efforts 

are being made to compile corpora of patients’ speech data 

(e.g., dementia bank) in different languages, which will 

address this limitation. This, along with the development 

and use of standard acoustic variable sets, would make 

cross-study comparisons more accurate and efficient. It is 

also worth mentioning that the field of machine learning is 

continuing to improve and develop, indicating that future 

studies’ classification models may not rely on the models 

discussed in this review but on more improved and accurate 

models.  

Lastly, studies that employ acoustic phonetic variables to 
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assess cognitive function lay the groundwork for 

transforming the evaluation process into an automated one 

that can be conducted in everyday settings as well as 

clinical environments. These studies foreshadow the 

potential for a cost-effective, non-surgical early detection 

and intervention approach for CI through automated 

cognitive function assessment. As a result, this study aims to 

emphasize the necessity for the development of a platform 

suitable for efficiently automating the CI assessment process 

using acoustic variables or speech signals.

In conclusion, it can be anticipated that the growing 

demand for standardized common grounds in the 

utilization of acoustic phonetic variables, both in 

classifying CI and other medical-related classifications, 

will lead to an increased use of standardized sets like 

ComPare, eGeMAPS, and the emergence of similar sets. 

And while the consideration of acoustic variables in CI 

classification is a relatively recent research trend, it has 

gained significant popularity due to the cost-efficiency of 

using speech signals as diagnostic determinants. 
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Study Temporal and acoustic measures used in assessment 

Toth et al. (2018) 1. Hesitation ratio: More than 30 ms no speech
2. Speech tempo

3. Length and number of silent and filled pauses
4. Length of utterance

Nagumo 
et al. (2020)

1. Mean and SDs of F1 and F2
2. Mean and SDs of F0
3. Triangular vowel space area
4. Vowel articulation index

5. Utterance duration
6. Number of pauses
7. Length of pauses
8. Number of uttered syllables

 9. Mean and SD of syllable duration 
10. Mean and SD of the power of maximum and 

minimum

Gonzalez-Moreira 
et al. (2015)

1. Speech time 
2. Number of pauses 
3. Proportion of pause 
4. Phonation time  

5. Proportion of phonation 
6. Speech rate
7. Articulation rate 
8. Number of syllables 

 9. Mean of syllables duration 
10. SD of F0 
11. Maximum variation of F0 
12. Mean of F0

König et al. (2015) 1. Mean median SD and ratio mean and 
sum of duration

2. Voice segment length
3. Silence segment length

4. Periodic segment length
5. Aperiodic segment length
6. Vocal reaction time
7. Length of sentence duration

 8. Amount of silence
 9. Distance time of the second, third, fourth until the 

ninth detected word position from the first word 
position.

De Stefano 
et al. (2021)

1. Number of semitones
2. Sound pressure level maximum (SPLmax)

3. Sound pressure level medium 
4. Speech time

Meilán et al. (2020) 1. Reading time
2. Phonation time
3. Speech rate
4. Pauses number
5. Normalized_PVI
6. Syll_Interv_DAverage
7. Interv_ΔStandar
8. VARCO of syllabic interval duration

 9. Syllabus interval number
10. Articulation rate
11. F0 (Mean, asymmetry (skewness), 

center of gravity and center of gravity 
SD)

12. LTAS (Mean, SD, range, 1 kHz-2 kHz, 
2 kHz-4 kHz)

13. Intensity (Mean, mean_SD, amplitude minimum, 
intens diferenc max-min mean)

14. Jitter (Local)
15. Shimmer (Local)
16. Voice breaks
17. Acoustic Voice Quality Index (AVQI)
18. HNR (dB)

Kumar et al. 
(2022)

1. Jitter
2. Shimmer
3. F0

4. (First four) formants
5. MFCC
6. GTCC

 7. Delta-MFCC and delta-GTCC

Shimoda 
et al. (2021)

1. Start and end time of all sounding and silent intervals
2. Intensity

3. Pitch 
4. Center of gravity, skewness, kurtosis, and SD

Liu et al. (2023) 1. ComParE: Energy, spectral, MFCC, HNR, voice quality 
features, viterbi smoothing for F0, spectral harmonicity, and 
psychoacoustic spectral sharpness.

2. eGeMAPS: F0 semitone, jitter, shimmer, loudness, spectralflux, MFCC, F1, 
F2, F3, alpha ratio, Hammarberg index, and slope V0 features.

Lin et al. (2020) 1. JitterDDP_sma_de 
2. Mfcc_sma_de[4]
3. ShimmerLocal_sma_de
4. Mfcc_sma_de[3]
5. Pcm_zcr_sma_de

 6. Mfcc_sma_de [1] 
 7. Pcm_RMSenergy_sma
 8. JitterLocal_sma 
 9. Adspec_lengthL1norm_sma
10. JitterDDP_sma

11. VoicingFinalUnclipped_sma 
12. F0final_sma_de
13. F0final_sma
14. AudspecRasta_lengthL1norm_sma

Themistocleous 
et al. (2018)

1. Vowel formants: First five formant frequencies, total duration 
2. F0 (Mean, min, and max)

3. Vowel duration: From vowel onset to vowel offset.

Da Cunha 
et al. (2022)

1. Vocal reaction time
2. Vowel phonation time
3. Consonant phonation time
4. Phonation time deviation

5. Pause ratio
6. Non-silent pause ratio
7. Silent pause ratio
8. Speech rate

 9. Intensity range
10. F0: Minimum, maximum

Nishikawa 
et al. (2022)

1. Vowel sounds (/a/, /i/, /u/, /e/, /o/)
2. MFCC

3. F0
4. Formant frequency (F1, F2)

5. Jitter (Local jitter, PPQ5)
6. Shimmer
7. HNR

Martínez-Nicolás 
et al. (2022)

1. Duration (Reading time)
2. Number of pauses speech rate
3. Average duration of syllabic intervals

5. SD of syllabic
6. Intervals duration mean amplitude
7. LTAS_50-1K
8. First formant (F1) SD

 9. F0
10. Spectral skewness
11. HNR
12. Jitter (Local)

López-de-Ipiña 
et al. (2013)

1. Pitch (SD, max and min)
2. Intensity (SD, max and min)
3. Period (Mean, SD)
4. Root mean square amplitude

5. Shimmer
6. Local jitter
7. NHR
8. HNR 

 9. Autocorrelation.
10. Fraction of locally unvoiced frames
11. Degree of voice breaks.

Yoshii et al. (2023) 1. Jitter (Local, relative average 
perturbation [rap], Point period 
perturbation quotient [ppq5], 
difference of difference of periods 
[ddp])

2. Duration of response time
3. Duration of speech periods
4. F0cov (Coefficient of variation of the 

fundamental frequency)

 5. Shimmer (Local, amplitude perturbation quotient 
[apq]3, apq5, apq11, average absolute differences 
between the amplitudes of consecutive periods 
[dda])

Sumali et al. (2020) 1. Pitch
2. HNR
3. Zero-crossing rate 

4. MFCC
5. GTCC
6. Mean, median frequency

 7. Signal energy
 8. Spectral centroid
 9. Spectral roll off point

Wang et al. (2022) 1. Silent periods

Yamada 
et al. (2021)

1. MFCC (Skewness and kurtosis)
2. First three formant frequencies
3. Jitter (Local, RAP, PPQ5, DDP)
4. Shimmer (Local, APQ3, APQ5, APQ11, 

DDA)

5. Pitch and its variation (Median absolute 
deviation)

6. Speech rate
7. Phoneme rate
8. Phonation time

 9. Pause
10. Response time (Mean, median, SD, maximum, and 

minimum, of each feature)

Hall et al. (2019) 1. Means and SDs of length for speech and silent segments.
2. F0 (Mean and SD)

3. F1-F5 (Means and SD)
4. Jitter
5. Shimmer (Local and APQ3)

Themistocleous 
et al. (2020)

1. H1-H2, H1-A1, H1-A3
2. Cepstral peak prominence
3. Mean energy concentration
4. Hammarberg Index

5. Shimmer
6. Jitter
7. Harmonicity 
8. Articulation rate

 9. Average syllable and articulation rate
10. Speech rate

Note. F0=fundamental frequency; GTCC=gammatone cepstral coefficients; HNR=harmonic-to-noise ratio; MFCC=mel-frequency cepstral 
coefficients; NHR=noise-to-harmonic ratio; SRP=speech range profile; SD=standard deviation.

Appendix 1. Temporal and acoustic measures used in assessment in reviewed articles
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